Class ConversationChain

A class for conducting conversations between a human and an AI. It extends the LLMChain class.

Hierarchy

Constructors

Properties

llm: LLMType

LLM Wrapper to use

outputKey: string = "text"

Key to use for output, defaults to text

Prompt object to use

verbose: boolean

Whether to print out response text.

callbacks?: Callbacks
llmKwargs?: any

Kwargs to pass to LLM

memory?: BaseMemory
metadata?: Record<string, unknown>
outputParser?: BaseLLMOutputParser<string>

OutputParser to use

tags?: string[]

Accessors

  • get inputKeys(): string[]
  • Returns string[]

  • get outputKeys(): string[]
  • Returns string[]

Methods

  • Run the core logic of this chain and add to output if desired.

    Wraps _call and handles memory.

    Parameters

    Returns Promise<ChainValues>

  • Invoke the chain with the provided input and returns the output.

    Parameters

    Returns Promise<ChainValues>

    Promise that resolves with the output of the chain run.

  • Create a new runnable sequence that runs each individual runnable in series, piping the output of one runnable into another runnable or runnable-like.

    Type Parameters

    • NewRunOutput

    Parameters

    • coerceable: RunnableLike<ChainValues, NewRunOutput>

      A runnable, function, or object whose values are functions or runnables.

    Returns RunnableSequence<ChainValues, Exclude<NewRunOutput, Error>>

    A new runnable sequence.

  • Format prompt with values and pass to LLM

    Parameters

    • values: any

      keys to pass to prompt template

    • Optional callbackManager: CallbackManager

      CallbackManager to use

    Returns Promise<string>

    Completion from LLM.

    Example

    llm.predict({ adjective: "funny" })
    
  • Parameters

    Returns Promise<string>

  • Stream output in chunks.

    Parameters

    Returns Promise<IterableReadableStream<ChainValues>>

    A readable stream that is also an iterable.

  • Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.

    Parameters

    Returns AsyncGenerator<RunLogPatch, any, unknown>

  • Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.

    Parameters

    Returns AsyncGenerator<ChainValues, any, unknown>

Generated using TypeDoc